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The Gibbs Phenomenon for Fourier Interpolation
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The Fourier interpolation polynomials for periodic functions with an isolated
jump discontinuity exhibit for growing order a Gibbs phenomenon. The over- and
undershots differ, however, from the ones appearing for the partial sums of the
Fourier series and depend on the coincidence of the jump with interpolation
nodes. t, 1994 Academic Press, Inc.

1. THE PROBLEM

Let f be a real-valued periodic function on IR with period 2n, of bounded
variation on [-n, n], and with an isolated jump discontinuity of size
f+(O- f-(0=2s in~. Let

be the nth partial sum of the Fourier series of f Then

1, (;:+?:)_f+(O+f-(~)=.s
1m Sn ., 2 S 0'

n -+ w n

where So=(2/n)g (sin t/t)dt= 1,1789 ... [8, n.9; 4]. In addition, this
value So has the character of a supremum in the sense

In view of the importance gained by the fast Fourier transform it seems a
legitimate question to ask whether such a phenomenon also appears in
discrete Fourier interpolation. Here (following [6, 4.1; 9, X.3])

a* n-l a*
s:(x)=-f+ L (ak*coskx+b:sinkx)+Tcosnx

k~l
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is a trigonometric polynomial of order n which for the nodes

satisfies

.n
xj=xn . j = J

n
(1~j~2n)

(l ~j ~ 2n),

(1 )

and s: is determined by these requirements uniquely up to an additive term
h* sin nx which vanishes automatically at each node Xj'

At a first glance a positive answer might seem trivial since for n -+ 00 one
has

so one would expect s: to behave like Sn' On the second thought, however,
one realizes that this impression is based not on an approximation of Sn by
s: but on an approximation of Sm for fixed m by the mth order part of s;r
for suficiently large n. A reasoning which wants to rely on a uniform
approximation of Sn by s: would require estimates such as

e
I!(x) cos kx- !(xj ) cos kxjl <- for Xj_l ~ x ~ Xj' 1~j ~ 2n, 1~ k ~ n

n

which are invalid for points near a jump and not guaranteed elswhere
wthout further hypotheses.

Reformulating a result of de la Vallee-Poussin [7], Zygmund [9, X.
Problem 10, 11] states that under the suppositions

one has

lim {s:(n- [iP(l1 n )!-(O+iP(1-l1n )!+(O]} =0.
n~ 00
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This does not immediately give an answer to the question at hand. Neither
does the result of Foster and Richards [2] who consider least squares
approximation of f by continuous functions which are linear on the inter
vals with endpoints xj (1 ~ j ~ 2n). There the Gibbs phenomenon may be
established by computing the ordinates of the approximating function at
the nodes. Although Fourier interpolation may be considered as a least
squares approximation problem [6, 4.6; 9, X.3], the ordinates of the
approximating trigonometric polynomials distant from the nodes (in which
they coincide with the values of f) do not roll out as readily from the
calculation of the approximating function.

Runck [5] studies the analogous problem for equidistant Lagrange
interpolation if the jump occurs in a node. Bojanic and Cheng [1] consider
Hermite-Fejer interpolation of f on [-1,1] by a polynomial Hn(f,·).
They show

(and a similar formula for lim in£) where ~ = cos an and where p(~)
depends on the fact whether a is irrational (in which case 13(0 = 1) or not.
This result again does not furnish information on the behaviour of Hn in
neighbourhoods of ~ which decrease as n - 00. Still, the theorem offered in
the next section reflects the dependence on the arithmetical properties of
the position of eas exhibited above.

2. AN ANSWER

As a partial answer to the above-mentioned question the following
theorem is offered.

THEOREM 1. Let f be a real-valued periodic function on IR with period 2n,
of bonded variation on [- n, n], and with an isolated jump discontinuity in
~ E [ - n, n] satisfying

f + (e) + f - (e) = 2f(e),

f+(0-f-(0=2s

Given n let m be determined by

n n
m -= X m ~ ~ < X m + 1 = (m + 1)-.

n n

(2)

(3 )

(4)
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Then for n -+ 00 one has
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where
10

S(O) = 3n = 1,061 ...,

4
S(t) = - = 1,273...

n
for t > O.

(5)

Proof For any n EN the interpolating trigonometric polynomial s:
may be written as

1 211

s:(x)=- I f(xj)D,nX- Xj ),
nj~l

where the modified Dirichlet kernel D: is given by

1 11 I 1
D:(u) = - + I cos ku +- cos nu

2 k~ I 2

1 . u
=- Sill nu cot-

2 2

[9, X.3]. D: is an even function satisfying

D,~(O) = n,

D:(n) = 0,

D:'(O) = D:'(n) = O.

By the linearity of the interpolation and by the theorem on uniform
convergence on closed intervals of continuity [7, X.5AJ it suffices to
consider the function f defined by

{

-I

f(x)= ~

for ~ -n <x< ~

for x =~, x = ~ + n

for ~ <x < ~ + n

(6)

with jumps of size 2s = 2 at ~ and ~ + n. Further on we therefore consider
the polynomial

1 nl + n*

s,~(x)=- I [D,~(x-Xj)-D:(x-xi+lI)],
n j =m+l

(7)



where
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n*= {n
n-I

if X rn < ~,

if X rn =~.
(8)

Note that the functions s:(xm+x) resp. s:(xrn +n/2+x) are odd resp.
even in x if X m =~, while in the case X rn < ~ this applies to the functions
s:(.xrn + n/2n + x) resp. s:(xm+ n/2n + n/2 + x). Applying elementary
trigonometric identities one obtains

and

{

smnu

* * sin uDn(u)-D,,(u-n)= .
sm nu
-.-cosu
sm u

if n is even

if n is odd

(9)

. ( 2
}~m..c n sin(n/2n)

sin n(x - x j )= (-I)j sin nx.

Suppose first that n is even. Then

s:(x)=(-I)rn I (-I)j. sinnx
n j=1 sm(x-xm+ j )

* ( !!.-) = (-1 )m ~ (-1)/+ I sin«2m + 3 )/2)n)
s" X

m
+

1 + 2n n /::1 sin«(j-I)/n)n-n/2n)

1 ,," ( - I)J-- L (10)
- n, = I sin«(2) - 3 )/2n)n)

Note that I/sin x is symmetric about x = n/2. Therefore the last sum
reduces to 2/sin(n/2n) if n* = n (xm < ~) and to 2/sin(n/2n) - 1/sin(3n/2n) if
n* = n - 1 (x m = 0. The assertion of the theorem now folIows from

. 2 4
hm =-

" ~ w n sin(n/2n) 1t'

n Sin(~n/2n») =~ (4-D·
If n is odd then by (7) and (9)

(
n ) 1 n" . (2) - 3 )

s: X m + 1 + 2n =~/~I(-I)Jcot ~n.

The fact that cot(x - n/2) is odd, together with the alternating signs, again
reduces the last sum to 2 cot( rr/2n) resp. 2 cot(rr/2n) - cot(3n/2n) with the
same limits as above. I
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By the same token and under the assumptions (2), (3), (4) one obtains

COROLLARY. Let

Then for n -> 00 one has

(k = 0, 1, ... ), (11 )

This agrees with (5) and with the fact that

. oc (_ 1)1 n
hm. Sk=2 I -21 =-2'

k-oo /~O + 1

In particular for k = 1 we get an undershot of s times 8/3n = 0,848.,. resp,
s times 46/15rr = 0,976, ."

The requirement (2), which we also presuppose in the sequel, is
motivated by the fact that for the partial sum Sn of the Fourier series for
f one has

This requirement is irrelevant in the case X m <~, If, however, X m = ~ and

C = [f(() - f+ (~); f-«()JI S -:f- 0,

then one necessarily has
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(13 )

(14)

A calculation as in the proof of the theorem shows that for k = 0, 1,2, ...
and n -4 00 one then has

* ( + (2k + 1)~) _ f + (0 + f - (0
Sn X m + 1 2n 2

2 [ (_I)k + I ]

= S • ; Sk + 2k + 3 (1 + c) + 0(1 ),

*( 7t) f+(~)+f-(~) 2
Sn x m + I ±2n - 2 s.;(c±l)+o(l).

If c= -1 (f(O=f-(~» then (13) agrees with the assertion for xm<~.

Formulas (13) and (14) point out that, as soon as the jump coincides with
an interpolation node, left or right continuity off introduce an asymmetry
in the location of the Gibbs phenomenon. Moreover, by these formulas
one may expect that, in case of a jump at an interpolation node, putting
c = 0 introduces a notable and even maximal reduction of the Gibbs
phenomenon. This again motivates the natural assumption (2) and the
special attention to the case ~ = X m in the rest of this paper.

3. THE SITUATION OF LOCAL EXTREMA

The theorem is incomplete insofar as it does not furnish information
about the behaviour of s:; between the nodes xj (where s:; agrees with f)
and the points x j + n/2n. In particular, the values indicated in the theorem
do not provide the maximal overshot. In order to obtain further relevant
information we compute the derivatives of s:; in the just mentioned points.
In order to simplify the notation we write

(15)

Note that

1( n-I )
D:;'(u)=-- 2 L: ksinku+nsinnu ,

2 k~ I

l( n-I )
D:;"(u)=-"2 2k~lk2cosku+n2cosnu.

By induction on n we get

640i7RiI-4
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This shows that if x = Xj' then the corresponding term in the sum for

I m+n'
sn*"(x)=- L [D,::'''(x-xj)-D,::'''(x-xj-n)]

nj~m+1

has to be replaced by -(nj3)(n2 -1) if n is even and by -(nj3)(n2 +2) if
n is odd, while in the sum for s,::"(x) it has to be replaced by O.

In the following we consider in detail the case of an even n. The case of
an odd n leads to the same results and will briefly be treated afterwards.

We now have

*')_! ~ (-I m+j+1 ncosnxsin(xm+j-x)+sinnxcos(xm+j-x)
Sn (x - L, ) -----=-'-""--.--=2-------'-'-'-"----

n j ~ I sm (x m + j - x)

1 n'
s,::'''(x)=- I: (_l)m+j+1

nj~1

n cos nx sin 2(xm+j - x) + sin nx[2 - (n 2 + I) sin2(xm+j - x)]
x . 3

sm (xm+j-x)

with eventual replacements as just stated. This gives

*' _ n' (_I)k+ j

Sn (Xm+k)- I . ( )'
j~ISmXk_j

i#k

*,( +!!:...)=! ~ (_I)k+j+1 COS(Xk_j)
Sn X m + k L, . 2 '

2n n j~ I sm (xk-J

*"( )=2. ~ (_l)k+i+1 COS(Xk_j) _ n
2

_1
Sn Xm+k L, . 2( ,

j~ 1 sm x k _ j ) 3
j#k

(16 )

( 17)

(18 )

(19)*"( +!!:...)=! ~ (_1)k+/ 2 -(n
2
+I)sin

2
(xk_ j )Sn X m + k L, > 3 >

2n n j~ I sm (Xk_j)

The followig lemma will be used to estimate the alternating sums above.

LEMMA 1. Suppose the non-negative non-increasing sequence {OJ }j~o
satisfies

(20)

and let
n

S = L (-I)j aj >

j~ 0
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If n is even then

If n is odd then

In particular, if an = 0 then (whether n is even or odd)

Proof If n is even then

s=(ao-a t )+(a2-a3)+ +(an- 2-an_d+an

~(a\-a2)+(a3-a4)+ +(an_1-an)=ao-s

~(a2-a3)+(a4-a5)+ +(an-an)=s-an-ao+a\.

If n is odd then

Recall that a function g is called convex in [a, P] if

49

(21)

(22)

(23)

Bg(a) + (I - B) g(P) ~ g(Ba + (I - B)P) for BE [0, I].

For a twice differentiable function g this is equivalent with gil ~ 0 in [a, P]
(for a concave function change ~ to ~). Note that the conditions of the
lemma are satisfied if aj = g(xo+ jh) (0 ~ j ~ n) where h > 0 and where g is
non-negative, non-increasing, and convex in [xo, X o+ nh]. Also two
consecutive inequality signs in (20) imply inequality signs in the resulting
estimates of the lemma.

We now want to estimate (16). In view of the symmetry of sin x with
respect to x = nl2 we restrict our interest to I ~ k ~ n12. Since sin x is an
odd function the first 2k - 2 terms of the sum cancel each other pairwise
while the remaining pairs of terms with (j - k) symmetric with respect to
nl2 are equal in value.
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In the case n* = n (Xm< () we therefore get

n/2 + k ( I )k + j + 1
s:'(xm + k )=2 L~ _(_l)n/HI.

j~2k sm(xj_d

Obviously the sign of s:'(Xm+k) is determined by the first sign in the sum
which is ( _1)k + I. Therefore we have

(24)

The function Iisin x is positive, decreasing, and convex in ]0, n12].
Applying the lemma and letting n ~ 00 we get in case nl2 - k is even

k+ 1 2 1 n (2 1)(-I) s:'(xm+d <-.-- . =- ---- +o(n)
Sill x k sm x k + Ink k + 1

and in case nl2 - k is odd

(_l)k+1 s,i'(Xm+k»-._I_=k
n

+o(n),
Sill x k n

(25)

(26 )

(25')

k+ I 2 I n (2 1)(-I) s:'(xm+d<-.--. =- ---- +o(n). (26')
sm x k sm x k + Ink k + I

Suppose now n* = n - I (xm= (). Then

while for k < nl2 we have

(27)

n/2 -I

s,;'(xm + k )=2 L
j~k+1

( I )j + I ( I)k + I
~ + ~ + (_ l)n/2 + I.
sm(xj ) sm(xd

Applying the appropriate estimates of the lemma we get if nl2 - k is odd

( I)k+1 *'( ) I 2 +. I +(_1)n/2+k- Sn xm + k >-.--- . +-.
smxk SIllXk+1 StnXk +2 StnXn /2_1

n(l 2 1)=; "k-k+l+(k+2) +o(n)

2n
7t ·k(k + l)(k + 2) + o(n), (28)
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(-1 )k+ 1 S:'(xm+d <_._1__ . 1 +. + (-1 r/2+k
Sill x k Sill X k + 1 Sill X ni2 - 1

n (1 1)=- ---- +o(n)
n k k+ 1

and if nl2 - k is even

51

(29)

. +(_I)nI2+k
Sill X n12-1

n (1 1)=; k- k+ I +o(n).

(28' )

(29' )

Next we are going to estimate (17), again for 1~ k ~ n12. Now since
cos x(sin 2x is an even function the first 2k terms of the sum cancel each
other pairwise while the remaining pairs of terms with (j - k) symmetric
with respect to (n + I )/2 again are equal in value.

If n* = n (xm < ,) then we obtain

(30)

while for k < n(2 we have

2 nl2 + k ( - )
*'(- )=_ '\' (_I)k+ j +l cos Xk_jSn Xm+k L. . 2 .

n j ~ 2k + 1 Sill (xk - j )

Here the sign of s:'(xm + k) is (-1)\ so we have

(31 )

The function cos xlsin2x is non-negative, decreasing, and convex in
]0, n12]. Note that the convexity requirement (20) of the sequence
{cos.xk_;/sin2xk_j}7'~;/+1 is not affected by adjoining a last term O.
Applying the lemma we get as n ~ 00
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( _ l)k *'( - ) ~ [COS i k _ cos ·'ik + I ]
Sn x m + k < . 2 - 2' 2n Sill X k Sill X k + I

4n (2 1)
= n2 (2k + 1)2 - (2k + 3? + o(n). (33 )

If n* = n - 1 (Xm = 0 then, holding k < n/2 for symmetry reasons we have

Applying the lemma again we obtain as n -> (f)

( _I)k *'(- ) ![COS(id_2COS(ik+d COS(ik+2 )]
Sn X m + k > . 2( . 2( ) + . 2( )n Sill Xk) Sill Xk + I Sill Xk+ 2

4n [1 2 1 ]
= n 2 (2k+ 1)2- (2k+3)2+ (2k+5)2 +o(n»O,

( _I)k *'(- )<![COS(id _ COS(ik+dJ
Sn X m + k . 2( -) . 2( _ )n Sill x k Sill X k + I

4n[ 1 1 ]
=n2 (2k+l?-(2k+3? +o(n).

(34 )

(35)

Let In = ]xm, Xm+ n12[ if Xm= ~ and In = ]Xm, .'im+ n12[ if Xm<~. As a
first conclusion of the foregoing estimates we see that in the nodes
xm+"xm+2, ... EIn the function s: is alternatingly increasing and
decreasing (cf. (24), (28), (28'», while in the points xm+ 1> xm+ 2, .. , E In it is
alternatingly decreasing and increasing (cr. (31), (32), (34». The two
sequences of bounds for the absolute values of the corresponding slopes are
decreasing (cf. (26), (26'), (29), (29') resp. (33), (35». The intervals of
length nl2n to the right of the nodes x m+ I' Xm+ 2' ... E In contain alter
natingly local maxima and local minima. This, together with the extremum
in the right end point of In (cf. (27), (30», accounts for n12-1 zeros of s:"
in In, and in view of the inflection in the left end point of In, for 2n - 2
zeros of s:" in [- n, n[. Any other local extreme of s: in In would push
the total of zeros of s:" in [- n, n [ above 2n; this is impossible for a
trigonometric polynomial of order n. This establishes the following
theorem.

THEOREM 2. The function s: assumes in each interval [Xm+b im+d
(1 ~ k ~ nl2 - 1) precisely one local extreme value, a maximum for k = 21- 1
and a minimum for k = 21. The derivative s:t has opposite signs in x m+ k and
i m+k' The function s: does not assume a local extreme value in [xm, x m+ I].
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4. BOUNDS

53

(36 )

In order to obtain bounds for the extreme values of s: we also try to
clarify the convexity behaviour of s: by evaluating the sign of s:" in the
points mentioned above.

In (18), again supposing k ~ n12, the first 2k - 2 terms of the sum are
pairwise equal while the remaining non-zero terms for n* = n cancel in
pairs. We obtain

and for k > 1 and n ~ w

k - 1 2 1
*"( )=4 " (-I)j+1 COSXj_~

Sn X m + k 1... . 2 3
j~l sm xj

4n2 [k-I(_I)Hl n 2J 2
=-2 L ·2 -12 +o(n).

n j~ 1 }

If n* = n - 1 then to the right member the term (-1 )k+ I (2 cos dsin 2 x k )

has to be added.
Observe that

00 (_ 1)i + 1 n2

I ·2 12
j~ 1 )

(this may be seen expanding the even periodic function given by
y = (x - n)2 on the period interval [0, 2n] into a Fourier series). Therefore
the difference in brackets is aiternatingly positive (for even k) and negative
(for odd k) and so is s:"(xm + k ) as n ~ 00, i.e.,

for sufficiently large n. (37)

In case n* = n - 1 the main term of the last member has to be replaced
by

~~J

Since the series converges and its terms are positive the conclusion (37)
about the sign of s:"(xm + k ) remains valid.
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Finally, for k ~ n/2, in (19) the first 2k terms of the sum are pairwise
equal while the remaining terms for n* = n cancel in pairs. This results in
the formula

(n*=n) where the term (-It+ 1 «n2 +1)sin2(-,\)-2)/(nsin3(xk» has to
be added if n* = n - 1. Observe that for fixed j and for n --+ 00 we have

(39)

We therefore compare (38) with the corresponding partial sum of the series

Note again that

(40)

and

00 (_ I)J + J

j~l 2j-l

n
arctan 1=

4

(this may be seen expanding the odd function y with period 8 and defined
for 0 ~ x ~ 4 by y = 4x - x 2 into a Fourier series). Therefore the series (40)
converges to zero. The function

is positive for x> 2 fi/n = 0,900..., decreasing for x> 2 }6/n = 1,559...,
and convex for x> 4 J3/n = 2,205... (this will allow an application of
Lemma 1 below). Also, one has g(I)= 1-8/n2 =0,189... and g(3)=
1/3 - 8/(27n 2

) = 0,303.... Therefore in the series (40) not only the individual
terms but also the partial sums are alternating in sign. By (39) the same is
true for (38) as n --+ 00, i.e. for fixed k and for sufficiently large n we have

(41)
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In order to verify the same assertion for n* = n - 1 we observe that

k

( _1)k L (-I)j (4 - 1)
j~l

a)

I (_l)j+k+1 g(2j-l)

= [g(2k+ 1)- g(2k+ 3)] + [g(2k+ 5)- g(2k+ 7)] +

55

By the convexity of the function g we may apply a reasoning as in the
proof of the lemma and obtain

k k+1
( _1)k I (- l)j g(2j - 1) > ( - l)k + I I (- 1F g(4 - 1).

j~ I j~ I

As n --+ r:fJ we get the same inequalities for the partial sums of the series
Lj~ 1 ( -l)j aj . Now for n* = n - 1 we have

( _ l)k k ( _ 1)k k + 1

(-I)k s:"(xm+k)=-- I (-I)jaj+-- I (-l)jaj >O. (42)
n j=l n j~1

Thus by (37) and (41) for each lEN the function s: is eventually concave
in X m + 21 - 1 and Xm+21-1 and convex in Xm+21 and Xm+21' In the reasoning
preceding Theorem 2 we have seen that s:" can change sing between
consecutive extreme values only once. Therefore, for fixed pEN and
1 !!!;k!!!;p the corresponding zeros of s:" eventually have to lie in the
intervals ]xm+k> Xm+k + I [and the function s: eventually has to be con
cave in [xm+ 21- I' x m+ 2/- JJ and convex in [xm+ 21, Xm+ 21].

THEOREM 3. Given any kEN, for sufficiently large n the values

(43)

(as well as the values S:(Xm+k) + (n/2n) s:'(xm+k») furnish upper resp.
lower bounds for the corresponding maxima resp. minima of s: in the

intervals [xm+ k> x m+ k].

A comparison of the values of S:(Xm+/) as calculated in (11), (12) with
(43) (taking into account the bounds (33) and (35» shows that as n--+ r:fJ

the largest overshot occurs in the first interval ]xm + I' xm + I].
Since s: as defined in (7) has eventually to be concave in the entire inter

val [Xm+21-1,Xm+21-1J and convex in the entire interval [x m + 2/,.X m + 2,J
an even better upper resp. lower estimate for the maxima resp. minima may
be obtained by the ordinate Yo of the point of intersection of the two



56 GILBERT HELMBERG

tangents in the endpoints. Let the ordinates in these endpoints be denoted
by YI resp. Y2 and the corresponding slopes by k 1 resp. k 2. Then with
h = n/2n one has

Observe now that the same convexity property of s: in the interval
[x", + k> X'" + k] together with the information on the inclinaton of the
tangents in X",+k and '~",+k contained in (24), (28), (28'), (31), (32), (34)
allows us to estimate the maximum from above resp. the minimum from
below if the tangents are replaced by "steeper" straight lines, i.e., if the
slopes of the tangents are replaced by upper estimates of positive values
and by lower estimates of negative values, as furnished by (26), (26'), (29),
(29') for k l resp. by (33), (35) for k 2 • Applying this to the interval
[x",+ I' .~"'+ I] in the case

resp. x'" < ¢

with
y=1

10
Y2=-+0(l)

3n

4n (1 1)k = -- --- +o(n)
2 11: 2 9 25

as n ~ 00 we obtain

Yo = 1,090... + 0(1)

resp.

resp.

resp.

resp.

4
Y2 = - +0(1)

n

3n
k l =-+ o(n)

211:

4n (2 1)k 2 = -- --- +o(n)
n 2 9 25

Yo = 1,337... + 0(1 )

as an upper bound for the corresponding maximum. This maximum in turn
should provide the asymptotic overshot factor S in the formula below.
Numerical evidence seems to indicate that under the suppositions of the
theorem

where

S(O):::::: 1,065 .

S( t) :::::: 1,282 .. for t > O.
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The concavity of s: in xm + 2/- 1 (and similarly the convexity of s: in xm + 21)

could also have been established using the following geometric argument:
the tangent to the graph of s: at Xm + 2/ - 1 intersects the line y= 1 to the
right of X m + 2/' This again can be shown using the corollary and the upper
estimate for Is:'(Xm + 2/ _ dl.

5. ODD HALF NUMBER OF NODES

The case of an odd n does not differ essentially from the case of an
even n. It is governed by the formulas

n cos nx cos(xm + j - x) sin(xm +j - x) + sin nx
x . 2

sm (xm+j-x)

s:"(x)= (_l)m I (_l)J+l {2nCo~n:sin(x':+j-X)
n J=l sm (X m +J x)

sin nx cos(xm + j - x)[2 - n2 sin2(xm +J - X)]}
+ . 3( )sm xm+j-x

n'

S:'(Xm+k) = L (-I )k+J+ I cot(xj_d
j~ I
j#k

1 n' (_I)j+k+l
s:'(xm+d =- L . 2( - )

n J~l sm Xj-k-l

n' 2
*"( )_" (_I)k+J+l_--=-__

Sn Xm+k - L.. . 2( )
J~ I sm Xj_k
j#k

1 n' 2 2' 2( - )
*"(_ ) __ " (_I)k+J+l (_ ) -n sm Xj-k-l

Sn X m + k - L. cos X J - k - 1 . 3(- )
nJ~l sm X j - k - 1

These formulas provide similar finite and the same asymptotic estimates for
n -> 00 as in case of an even n. As to the number of extreme values of s/~ ,
however, there is a difference to be noted in comparison with the case of
an even n: For xm<~ each interval [xm+j,Xm+J+l[ (l~j~(n-I)/2)

contains an extreme value. Together with the extreme value in
X m + In + 1)/2 = Xm + n12, a symmetry point for s*, this accounts for n extreme
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values in Um, xm+ n[, as much as a trigonometric polynomial of order n
can have, considering the symmetry of s;:' with respect to xm • For X m =~,

however, there are extreme values in [xm + j ,Xm + j +l[ (l:::::::j:::::::(n-3)/2)
plus one at the symmetry point xm + (n _ 1)/2 = X m + nl2 of s;:'. This accounts
for n - 2 extreme values in [x m , X m + n[. The followig lemma should
forestall a useless search for supposedly forgotten extreme values.

LEMMA 2. For f as in (6) the order of s: as a trigonometric polynomial
is

(a) n - I for n even,

(b) n for n odd and X m <~,

(c) n-2for n odd and xm=~'

Proof Having exhibited the corresponding numbers of extreme values
in a symmetry-half of a period interval it suffices to show that the order is
bounded above by the given values. Therefore (b) is evident. Now consider

n* n- 1

ns;:'(x) = L L [cosk(x-xj)-cosk(x-xj-n)]
j~ 1 k~ 1

+1 I: [cosn(x-xj)-cosn(x-xj-n)].
j~1

The difference between the last brackets vanishes if n is even. This shows
(a). If n is odd and X m = ~ then n* = n - I is even and the last sum becomes

n-l n-l

I: cos(nx-jn)=cosnx· I: (-I)j=O.
j~ I j~ 1

Moreover, in the first sum for k = n - I the difference between the brackets
vanishes since n - I is even. This shows (c). I

As an example we note that for n = 3 and ~ = 0 one gets

sj(x) = J3 sin x.

The further conclusions about maxima and minima of s: are the same as
in the case of an even n. The details are left to the reader.

6. ODD NUMBER OF NODES

So far (ef. (1» we have considered interpolation with an even number of
nodes x j = x n, j = jnln (I ::::::: j ::::::: 2n) in the period interval ]0, 2n]. There are
several excuses for doing so. In the first place, due to the fact that together
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with xj+n:=xj + n is a node, the function s: is given by comparatively
simple formulas. Secondly, an analysis of this function is simplified by
various symmetries which decompose s: into four congruent parts within
an appropriate period interval. Finally, the usual fast Fourier transform is
based on powers of two as a number of nodes. Essentially, however, not
much changes if we use an odd number of equidistant nodes

(-n~j~n) (44)

in a period interval ] -n, n] (we freely admit nodes which are congruent
to the above ones modulo 2n). Since it does not seem worth while to go
through all details again we sketch an approach by which the reader can
convince himself of this fact, using a rearrangement of the calculations
which also sheds some more light on the possibility of cancelling and
doubling which has been helpful in the previous calculations.

In general for a function f the unique trogonometric polynomial sn of
order ~ n interpolating f at the nodes (44) is now given by

where the Dirichlet kernel D n is given by

D -~ ~ c k _ sin(((2n+ 1)/2)u)
n(U)-2+ kL.:1 os u- 2sin(u/2)

[9, X.I]. D n is again an even function satisfying

Dn(n - x) = Dn(n + x)

I
D n (0)=n+ 2,

for j $. 0 mod 2n + 1,

(-It
D (n)=--

n 2'

n

D~ (u) = - I k sin ku
k=l

(2n + 1) cos( ((2n + 1)/2) u) sin(u/2) - sin(«(2n + 1)/2) u) cos(u/2)

4 sin 2(u/2)

D~(O) = D~(n) = 0,
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"
D;;(u) = - L P COS ku

k~l

[
- (2n + 1) cos«((2n + 1)/2)u) sin u ]

- 2 sin( ((2n + 1)/2) u)[2n(n + 1) sin 2(u/2) - cos 2(u/2)J
8 sin 3(u/2)

" n
D~(O)= - L k 2 = -(j(n+ 1)(2n+ 1),

k~l

" n
D;;(n)= L: (-I)k- I k 2 =(-I)"+1 2(n+l).

k~1

if ~=O,

if
n

0< ~ < 2n + l'

if
n

- -- <¢<O
2n + 1 '

if
y n
<;=2n+ r

The functions D~ resp. D~ are odd resp, even.
In the sequel also the following values will be needed (we adhere to the

notation (15) but now referring to the nodes (44)

_ ( - 1)j
D,,(xj )=2 ' (-/2)'Sill x j

, ( - 1)j (2n + 1)
DJ"l;;j)= 4' ( /2) ,sm x j

, _ -1 )j+ 1 cos(x)2)
D,,(xj ) = ( 4'2(-/2) ,

Sill x j

If )_(-l)j+1 (2n+l)cos(x)2)
D,,(xj - 4 sin 2(x)2)

If - _ j+1 [ n(n+ 1) cos
2
(x)2) ]

D" (xj ) - ( -1) 2 sin(x)2) - 4 sin 3(x
j
/2) .

For the study of Gibbs' phenomenon again as in the proof of the theorem
and in the sequel thereof it suffices to consider the function f given by (6).
Without loss of generality we now assume - n/(2n + 1) < ~ ~ n/(2n + 1).
The interpolating polynomial s" is then given by

2 "-- L [D,,(x-xj)-D,,(x+xj )]
2n + 1 j~ I .

2n: 1 ttl [D,,(x-xJ-D,,(x+xJ] -D,,(X)}

_2_{i [D,,(X-Xj)-D,,(X+Xj)]+D,,(X)}
2n+ 1 j=1

2 "-- L: [D,,(x-xj)-D,,(x+xj_dJ
2n + 1 j~ 1 .
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A glance at the case; = 0 will exhibit the computational effect of the under
lying symmetries: if we choose x = Xk or x = Xk then, as demonstrated
below, the terms which appear in both of the sums

n n

I Dn(x-xj )- I Dn(x+xj )
j=l j=l

cancel while the remaining terms pair off due to the fact that Dn is even.
This works the same way for the second derivatives, while in the first
derivative of sn the effect is different due to the fact that D~ is odd. In
contrast to the interpolated function f, its interpolating polynomial sn is no
longer symmetric with respect to x = n/2. Still we mainly restrict attention
to O~k~n/2.

For n ....... (f) we obtain

2 n

sn('\'d =-21 I [Dn(.\'k -j) - Dn(xk+J)]
n+ j~1

2 [k - 1 (_ 1)j ( - 1)k n- I ( - 1 )J ( - 1)n]
= 2n + 1 j~O sin(x)2) + 2 sin(xkI2) - J~~-k sin(x)2) - -2-

2 [ k - I(- IY (- 1)kJ
=- 2 L --+-- +0(1).

7[ j = 0 2) + 1 2k + 1

This agrees with the assertions (11), (12) for the case x m =; III the
corollary. In particular for k = 1 we get

S(~) = ~ [2 - !] + o(1)
n2n+l n 3

10
= 3n + o( I),

while a similar calculation gives

_(2n -1) 2 [1 (_l)n - I

Sn 2n + 1 n = 2n + 1 sin(xo/2) - 2 sin(xn_ J/2)

4
=-+0(1),

7[

both in agreement with Theorem 1(5).
Similarly we have

S~(Xk) = 2n~ 1JI [D~(Xk_j) - D~(Xk+J)]

n - k (_ 1)i+ I ( _ 1)k+ I

=j=~+ I sin(x;l2) + 2 sin(xk/2)'

(-2
1tJ
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Applying Lemma 1 and letting n --> 00 we get the same asymptotic
estimates (for m=O) as in (28), (29), (34), (35), (36), (42) (the reader
interested in details is referred to [3]).

The conclusion is that in the points Xk and Xk the interpolating tri
gonometric polynomial behaves asymptotically in the same way for an odd
number of nodes as for an even number of nodes. It would be convenient
to obtain this scarcely surprising conclusion and its extension to the whole
period interval by a uniform o( 1)-estimate of Is: - snl as n --> 00. Unfor
tunately at least over the entire period interval such an estimate seems
impossible since

S(~n)=1
n 2n + 1

while

(
2n - t) t 2s: -2- n = - [cot(n/4n) + (-1 t cot((2n - t) n/4n)] = - + 0(1)

n ~ n

and

2n-l 2n
--n<--n<n.

2n 2n+ 1

7. ASYMPTOTIC BEHAVIOUR

If a sequence of interpolations is considered where n runs through an
increasing sequence of integers {n i } ': I then the behaviour of s: and sn in
the neighbourhood of an isolated jump discontinuity ~ off depends on the
position of ~ with respect to the nodes considered. If ~ = 0 then the over
shot is governed by the case X m = ~. The same is true if ~ is a node for every
n i (I :s:; i < (0), e.g., if ~ is a dyadic fraction of 2n as in the usual application
of the fast Fourier transform. If ~ is an irrational multiple of 2n then the
overshot is governed by the case X m <~. If ~ is non-zero and a rational
multiple of 2n and if the number of nodes runs through N, then infinitely
often the overshot behaviour changes from one case to the other. In par
ticular for the function (6) this alternating behaviour may be observed at
the point ¢= n if ~ = 0 and if the number of nodes increases through the
sequence of natural numbers. In any case, the asymptotic overshot factors
differ from the factor turning up in the classical Gibbs phenomenon, as
shown by the calculated lower and upper bounds.
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